

The Basics & Beyond of Europe's High-End Research Funding

Yoram Bar-Zeev (ybz@beacontech.eu) Sharon Alon (sharon.alon@beacontech.eu) Yasmin Wachs (yasmin.wachs@beacontech.eu)

AGENDA

Context

- Horizon 2020
- ERC Basics

ERC Workflow framework

PI Selection

- Candidates' Profile
- Eligibility Criteria
- Pl's Commitment
- Collaborators
- Training

Scientific Excellence

- What is Excellence?
- What is the nature of ERC project?
- Proposal writing
- Panel selection
- Training
- Technical and Administrative
 - Application & submission processes
 - Budget & Ethical Issues
 - Common mistakes
 - The evaluation 'black box'
- Interview preparation

Widening Participation: Science with and for Society

European Institute of Innovation	FUDATONA	Joint Research Centre
and Technology (EIT)	EURATOIVI	(JRC)

Basic Research

Market

1	2	3	4	5	6	7	8	9
Basic principles	Technology concept	Experimental proof of concept	Technology validated in lab	Technology validated in relevant environment	Technology demonstrated	System prototype	System complete and qualified	Actual system proven in operational environment

Technology Readiness Level (TRL)

- > A personal grant
- Investigator-driven independent & creative PI
- Pioneering ideas go beyond existing knowledge
- Basic research High risk
- Impact High gain make EU research stronger and more visible
- > No thematic priorities anything goes
- Sole evaluation criteria Excellence

Single Submission – Two-step Evaluation

ERC WORKFLOW

Screening Establish the Proposal Writing Admin / Interview Concept Technical Preparation

- Independent researchers from <u>ALL nationalities</u> can apply
- Host institution must be in an EU Member State / Associated
 Country
- Private for-profit research centers are eligible as Host institutions
- ➢ ERC grants are <u>personal</u> and <u>portable</u> within the EU

ERC CATEGORIES

STARTING (StG)

- Budget (€): 1.5M + 0.5M*
- Duration: up to 5 years
- Commitment: min. 50%
- Deadline: <u>18-10-2016</u> (tentative)

CONSOLIDATOR (CoG)

- Budget (€): 2M + 0.75M*
- Duration: up to 5 years
- Commitment: min. 40%
- Deadline: <u>9-2-2017</u> (tentative)

ADVANCED (AdG)

- Budget (€): 2.5M + 1M*
- Duration: up to 5 years
- Commitment: min. 30%
- Deadline: 1-9-2016 (next round- 31/8/2017, tentative)

*Justified purchase of major equipment / access to large-scale research infrastructures / relocation costs

$7 < PhD \le 12$ years (prior to 1/1/2017)

 $2 \leq PhD \leq 7$ years

Cut-off dates: PhD awarded from 1 January 2005 to 31 December 2009 (inclusive)

PhD awarded from 1 January 2010

to 1 January 2015 (inclusive)

Significant last 10 years track record

Screening Establish the

Beacon Tech Ltd. 2016

beacontech Research & Innovation Management

(prior to 1/1/2017)

Cut-off dates:

Career Breaks (extension of eligibility window)

- Maternity leave 18 months / child
- Paternity leave actual documented leave
- Long-term illness, clinical training or national service as documented

MD/PhD (unlike PhD/MD)

- Eligibility window according to the earliest degree date
- StG \rightarrow <u>4-9 years</u> past MD degree
- CoG \rightarrow <u>9-14 years</u> past MD degree

- Calculate the eligibility window correctly
 - Check the diploma award date
 - Career breaks (maternity/parental leave, clinical training, etc.)
- Category margins When to apply ?
 - Use career breaks to change categories? (AdG \rightarrow CoG \rightarrow StG)
 - Late StG early CoG / Late CoG early AdG
 - Don't misuse
- Blocking is personal
 - Restrictions on submission due to score B or C in Step 1 in previous submission
 - "Can I submit a different proposal this year instead?"

 Screening
 Establish the
 Proposal Writing
 Admin /
 Interview

 Concept
 Technical
 Preparation

	Min. % Time dedicated to ERC project	% Recommended	Min. % Presence in an EU Member State /Associated Country
StG	50%	>60%	50%
CoG	40%	>50%	50%
AdG	30%	30-45%	50%

	erview
Concept Technical Pre	aration

Deadline Interview GA

- Creative thinkers able to create paradigm shifts
- Outstanding CV & high-impact publications
- Proven leadership and independence
- Basic-research oriented
 - Rather than industry or teaching
 - Clinicians & Engineers the "applicative thinkers" problem
- Timing (career-wise)

PI PROFILE

Competitiveness in EU research arena

h-index "vulnerability"

International visibility

Non-incremental work

Interdisciplinarity

Encouraged when well justified, not a must

PI PROFILE

Career/Discipline shift

Leading a research team

StG	CoG	AdG
Not mandatory, could be an advantage	Critical	Critical

Mentoring new scientists

Point in time, career-wise

StG	CoG	AdG
Is it too early? / Transition to CoG	Publication status Personal considerations Transition to AdG	Publication status Personal considerations

Point in time, concept-wise

- Ahead of the competition? Is it mature enough?
- Will it be too late next year?

- Pending publications

Screening Establish the

- Convincing preliminary findings

'WHY ME, WHY NOW?'

- ''The PI has not yet achieved a sufficiently strong publication record''
- ''The PI has <u>little experience in training</u> and advancement of young scientists''
- ''The PI's achievements do not typically go beyond the state of the art''
- ''It is not clear if the PI has <u>enough experience</u> to carry out this project''

What to do...

- ✓ Clarify that you, as a PI, are in the best position to carry out this project
- ✓ Highlight your key achievements in the proposal text publications, invited talks, conferences, young researcher supervision, etc.
- \checkmark Use <u>references</u> to show your track record
- ✓ Describe relevant <u>unpublished findings</u> preliminary research
- Provide evidence of international visibility in the field
- ✓ Consider waiting...
- © Beacon Tech Ltd. 2016

 Screening
 Establish the
 Proposal Writing
 Admin /
 Interview

 Concept
 Technical
 Preparation

- > Focus is on the PI this is not a collaborative project
- ≻ No Co-PI
- Present your team members expertise / multidisciplinarity
- ➢ If collaborator/s are needed -
 - Specifically identified expertise with added value
 - Not core research
 - Identify by name
 - Internal or External from anywhere in the world
 - Budgeted as needed

 Screening
 Establish the
 Proposal Writing
 Admin /
 Interview

 Concept
 Technical
 Preparation

ERC FOR SH RESEARCHERS? – YES! becontech

"I can't compete with life / exact sciences"

 You don't. There is a dedicated budget for SH, and the application is evaluated by scholars from <u>your</u> research domain

"What is considered 'high risk' research in SH disciplines?"

- A first attempt at proving a novel hypothesis
 - Suggesting A new theoretical framework to an open/unsolved question in your research field
 - Challenging a common approach by suggesting a paradigm shift
- More feasibility is expected in SH compared to other domains

What to do...

- Targeted identification of potential SH researchers, awareness-raising and coaching of promising SH researchers
- Concept crystallisation at an early stage
- Support SH researchers with rejected ERC grants to resubmit

© Beacon Tech Ltd. 2016

Technical Preparation

Screening Establish the

© Beacon Tech Ltd. 2016

RA ERC TRAINING & AWARENESS

- Identify the right candidates How to identify "ERC material"? How to decide on "Go/No-Go"?
- Understanding the uniqueness of ERC
- > Awareness raising for researchers
 - ERC Info days
 - ERC Training
- Success stories
- Coaching
- Consulting (peers, NCPs, experts)
- The sooner the better

Screening Establish the Concept Proposal Writing Admin / Interview Technical Preparation Deadline Interview GA

© Beacon Tech Ltd. 2016

 Establish the
 Proposal Writing
 Admin /
 Interview

 Concept
 Technical
 Preparation

- > Hypothesis-driven Research
- > High-risk, high-gain
 - > Conceptual leap forward
 - > Non-incremental workflow, while presenting preliminary results
 - Large scale vs. minimal impact expanded scope over a niche research
 - > Opening the horizon for future research
- Do not underestimate the 'high risk'
 - > Preferably uncharted waters
 - > The "Noble Prize paradox" / past breakthroughs
- Avoid 'fishing expeditions'
 - Something will come up, no matter what''

Establish the Concept	Proposal Writing	Admin / Technical	Interview Preparation

- > Avoid being 'too ambitious'
 - > 'Not able to carry out the work'
 - Feasibility aspect avoid 'hand waving', not bringing it down to earth
- Novel subject, novel methodology or both
 - Avoid basing on integration and/or optimization of existing theories, technologies, methodologies or tools
- Does it hold a 5 year research plan ?
- Comprehensive but not fragmented
 - Avoid stand-alone sub-projects/studies
 (both in concept and presentation)

Establish the Concept	Proposal Writing	Admin / Technical	Interview Preparation	
			L	

- ➢ Is the concept within the core expertise of the PI?
 - > Will a dramatic change of infrastructure be needed? (e.g. computational biology to "wet" lab, theory to experimental)
- Some feasibility Keep the fine balance
 - > Present preliminary results that do not diminish the high-risk
 - > Provide a *Limited* risk-assessment and contingency plan
- Present a macro-level work plan
 - > Overall timeline and research phases
 - > Avoid "WP structure" and deliverables
- Does it have an "open end"?
 - > "Closed end" vs. open the horizon for more research
 - Too applicative: culminates into a PoC/demonstration (WPs) → Consider FET-Open / other H2020 opportunities

Technology Readiness Level (TRL)

© Beacon Tech Ltd. 2016

Establish the	Proposal Writing	Admin /	
Concept		Technical	Preparation

Deadline Interview GA

THE ERC - FET-OPEN PATH

L L L Deadline Interview GA

ESR KEY CRITICISM - NOVELTY

- ''The proposal <u>fails to go beyond</u> the SotA in the field"
- "The proposal presents incremental work rather than opening a new research path"
- ''The risks involved seem moderate''
- ''the theoretical formulation of the proposal was still <u>insufficiently developed</u>, remaining somewhat <u>vague</u>''
- ''one cannot really see what the project might contribute that is <u>ground-breaking</u> or that will <u>expand in a significant way</u> what we already know''
- "The suggested impact seems rather low".
- ''the reach of the project looks more like the sort of project that would <u>better justify</u> <u>a book</u> by the PI''

What to do...

> Clarify the potential major <u>breakthroughs</u>, <u>originality</u> and <u>creativity</u> of the project

creening Establish the Concept

- Explain why the project is <u>high-risk</u>, <u>high-gain</u>
- Focus on the planned research rather than what you have done so far
- Emphasise the gap between the proposed project and the SotA

- "The objectives appear to be too ambitious to be feasible"
- ''The risks clearly outweigh any gains to be obtained from the project"
- ''The scope of the project is <u>unrealistic</u>''
- "The proposal requires greater clarity and specification"
- ''The potential challenges are not described in detail''
- "The proposal is feasible but does not seem high risk or high gain"
- ''A more interdisciplinary approach may be warranted here''
- "The timescales and resources of the proposal seem unjustified"

What to do...

- Provide preliminary findings/results in the text
- Include a <u>risk-assessment</u> and risk mitigation measures (~1/2 page)
- Prove that the <u>ambition level</u> is high, but not too high
- Focus on a manageable number of objectives (~3-6)
- Include a <u>general</u> outline of the workplan that matches the resources (~1/2 page + high-level Gantt chart)

Establish the Concept	Proposal Writing	Admin / Technical	Interview Preparation	

beamtech & Innovation Management

Lead the panel selection – make sure to select the right panel/s to avoid bouncing the proposal to another panel

How to choose the panel/s?

- Mandatory: 1 Review Panel with 1 corresponding Sub-panel ("ERC keyword")
- > Optional: 1 additional Review Panel, and up to 3 additional ERC keywords
- > The primary review panel will probably manage the evaluation process
- The panelists have the mandate to bounce the proposal to another panel

What to consider?

- Who will appreciate the PI (CV) and his/her novelty?
- Who understands the PI's language/terminology?
- Will the PI feel comfortable to present to these people in the interview (StG/CoG)?
- Does the PI need more than one panel? How interdisciplinary is she/he?

PANEL SELECTION

Primary Review Panel Structure

Physical Sciences & Engineering				
PE1 Mathematics All areas of mathematics, pure and applied, plus mathematical for science, mathematical physics and statistics.	Life Sciences LS1 Molecular and Structural Biology and Biochemistry Molecular synthesis modification and interaction biochemistry biophysics structural			
PE2 Fundamental Constituents of Matter Particle, nuclear, plasma, atomic, molecular, gas, and optical physics.	Molecular synthesis, modification and interaction, biochemistry, biophysics, structural biology, metabolism, signal transduction.			
PE3 Condensed Matter Physics Structure, electronic properties, fluids, nanosciences, biophysics.	LS2 Genetics, Genomics, Bioinformatics and Systems Biology Molecular and population genetics, genomics, transcriptomics, proteomics, metabolomics, bioinformatics, computational biology, biostatistics, biological modelling and simulation, systems biology, genetic epidemiology.			
PE4 Physical and Analytical Chemical Sciences Analytical chemistry, chemical theory, physical chemistry/chemical ph	LS3 Cellular and Dev	velopmental Biology		
PE5 Synthetic Chemistry and Materials Materials synthesis, structure-properties relations, functional and	Cell biology, cell physi pattern formation in pla	iology, signal transd ants and animals, ste	Social Sciences & Humanities	
molecular architecture, organic chemistry.	LS4 Physiology, Patl Organ physiology, pat	hophysiology and En thophysiology, endo metabolic syndrome	SH1 Individuals, Markets and Organisations Economics, finance and management.	
Informatics and information systems, computer science, scientific systems.	LS5 Neurosciences a	and Neural Disorders	SH2 Institutions, Values, Environment and Space	
PE7 Systems and Communication Engineering Electrical, electronic, communication, optical and systems engineering	Neurobiology, neuroa neuroimaging, systems	neuroscience, neuro	Political science, law, sustainability science, geography	, regional studies and planning.
PE8 Products and Processes Engineering Product design, process design and control, construction methods, c	LS6 Immunity and In The immune system ar treatment of infection.	nfection nd related disorders,	SH3 The Social World, Diversity, Population Sociology, social psychology, demography, education, G	communication.
processes, material engineering.	LS7 Diagnostic Tools Aetiology, diagnosis an	s, Therapies and Pub	SH4 The Human Mind and Its Complexity	
Astro-physics/chemistry/biology; solar system; stellar, galactic and e planetary systems, cosmology, space science, instrumentation.	clinical medicine, regen	erative medicine, me	Cognitive science, psychology, linguistics, philosophy o	f mind.
PE10 Earth System Science Physical geography, geology, geophysics, atmospheric sciences, ocea	Evolution, ecology, anir biology, eco-toxicology,	mal behaviour, popul , microbial ecology.	SH5 Cultures and Cultural Production Literature, philology, cultural studies, anthropology, st	udy of the arts, philosophy.
cryology, ecology, global environmental change, biogeochemical cy management.	LS9 Applied Life Scie Applied plant and anir pon-medical biotechno	ences and Non-Medi mal sciences, food s	SH6 The Study of the Human Past	
Seacon lech Liu. 2010	bioremediation.	ingles, moengineerin	Archaeology and history.	

PANEL SELECTION

Secondary Review Panels

		processing (e.g. speech, image, video)			1			
P	E6 12	Scientific computing, simulation and modelling tools						
P	F6 13	Bioinformatics biocomputing and DNA and molecular co	moutation					
			162 Consti	c Conomi	cs. Riginformatics and Systems Riglas	DU Mak		
PE/ S	ystems	s and Communication Engineering: Electrical, ele	genetics geno	mics transc	rintomics proteomics metabolomics h	<u>sy.</u> wor	ecular and	mputational
and syste	ems eng	ineering	biology, biostati	stics, biologi	cal modelling and simulation, systems biolo	ogy, gene	etic epiden	niology
Pt	E/_1	Control engineering	152 1	Genomics	comparative genomics functional genomics	8// 8		
PI	E7_2	Electrical engineering: power components and/or system	152.2	Transcripto				
P	E7_3	Simulation engineering and modelling	LS2_3	Proteomics		<u>SH1</u>	Individ	uals, Markets and Organisations: Economics, finance and management
PI	E7_4	(Micro and nano) systems engineering	LS2 4	Metabolom	nics		SH1_1	Macroeconomics; monetary economics; economic growth
P	E7_5	(Micro and nano) electronic, optoelectronic and photonic	LS2 5	Glycomics			SH1_2	International trade; international business; international management; spatial economics
PI	E7_6	Communication technology, high-frequency technology	LS2 6	Molecular	genetics, reverse genetics and RNAi		SH1_3	Development economics, health economics, education economics
PI	E/_/	Signal processing	LS2 7	Quantitativ	e genetics		SH1_4	Financial economics; banking; corporate finance; international finance; accounting;
P	E/_8	Networks (communication networks, sensor networks, n	LS2 8	Epigenetics	and gene regulation			auditing; insurance
Pt	E7_9	Man-machine-interfaces	LS2 9	Genetic epi	idemiology		SH1 5	Labour and demographic economics; human resource management
Pt	E/_10	Robotics	LS2 10	Bioinforma	tics		SH1 6	Econometrics: operations research
PI	E/_11	Components and systems for applications (in e.g. medicii	LS2_11	Computatio	onal biology		SU1 7	Rehavioural economics: experimental economics: neuro-economics
P1	E/_12	Electrical energy production, distribution, application	LS2 12	Biostatistic	5		CU1 0	Microsconomics, game theory
PE8 P	Product	ts and Processes Engineering: Product design,	LS2_13	Systems bio	ology		SH1_0	Industrial economics, game theory
construct	tion me	thods, civil engineering, energy processes, material er	LS2_14	Biological s	ystems analysis, modelling and simulation		SH1_9	industrial organisation; strategy; entrepreneursnip
PE	E8_1	Aerospace engineering		- and Dove	lonmontal Biology Coll history coll n		SH1_10	Management; marketing; organisational behaviour; operations management
PI	E8_2	Chemical engineering, technical chemistry	organogenesis	developmen	tal genetics, pattern formation in plants ar		SH1_11	Technological change, innovation, research & development
PE	E8_3	Civil engineering, architecture, maritime/hydraulic engine	183.1	Mornholog	v and functional imaging of cells		SH1_12	Agricultural economics; energy economics; environmental economics
		treatment	193.2	Cell biology	and molecular transport mechanisms		SH1_13	Public economics; political economics; law and economics
PE	E8_4	Computational engineering	153_3	Cell cycle a	nd division		SH1_14	Quantitative economic history; institutional economics; economic systems
PI	E8_5	Fluid mechanics, hydraulic-, turbo-, and piston engines	LS3_5	Apoptosis		SH2	Institut	ions, Values, Environment and Space: Political science law sustainability
P	E8_6	Energy processes engineering	LS3 5	Cell differe	ntiation, physiology and dynamics	scienc	e geogra	anhy, regional studies and planning
PE	E8_7	Mechanical and manufacturing engineering (shaping, mo	LS3 6	Organelle b	piology	501011	SU2 1	
PE	E8_8	Materials engineering (metals, ceramics, polymers, comp	LS3 7	Cell signalli	ng and cellular interactions		SH2_1	Political systems, governance
P	E8_9	Production technology, process engineering	LS3 8	Signal trans	sduction		SH2_2	Democratisation and social movements
P	E8_10	Industrial design (product design, ergonomics, man-mach	153.9	Developme	ent, developmental genetics, pattern formation		SH2_3	Conflict resolution, war
P	E8_11	Sustainable design (for recycling, for environment, eco-de		animals	· · · · · · · · · · · · · · · · · · ·		SH2_4	Legal studies, constitutions, human rights, comparative law
PE	E8_12	Lightweight construction, textile technology	LS3 10	Developme	nt, developmental genetics, pattern formation		SH2_5	International relations, global and transnational governance
P	E8_13	Industrial bioengineering	LS3 11	Cell genetic			SH2_6	Sustainability sciences, environment and resources
PE9 U	Univers	e Sciences: Astro-physics/chemistry/biology; solar	LS3_12	Stem cell b	iology		SH6_7	Environmental and climate change, societal impact and policy
extragala	ctic ast	ronomy, planetary systems, cosmology, space science	LSA Divisio	om Datha	nhysiology and Endocrinology Organ		SH2_8	Energy, transportation and mobility
PE	E9_1	Solar and interplanetary physics	endocrinology r	netabolism	ageing tumorigenesis cardiovascular dise		SH2_9	Urban, regional and rural studies
PE	E9_2	Planetary systems sciences	154 1	Organ nhvs	iology and nathonhysiology		SH2_10	Land use and regional planning
PE	E9_3	Interstellar medium	154_2	Comparativ	e physiology and pathophysiology		SH2 11	Human, economic and social geography
PE	E9_4	Formation of stars and planets	154 3	Endocrinol	nev		SH2_12	GIS, spatial analysis; big data in political, geographical and legal studies
PE	E9_5	Astrobiology	154_4	Ageing	-61			
PE	E9_6	Stars and stellar systems	LS4 5	Metabolisn	n, biological basis of metabolism related disord	SH3	The So	cial World, Diversity, Population: Sociology, social psychology, demography,
PE	E9_7	The Galaxy	LS4_6	Cancer and	its biological basis	educa	ation, con	nmunication
PE	E9_8	Formation and evolution of galaxies	LS4 7	Cardiovasc	ular diseases		SH3_1	Social structure, social mobility
PE	E9_9	Clusters of galaxies and large scale structures	LS4_8	Non-comm	unicable diseases (except for neural/osychiatri		SH3_2	Inequalities, discrimination, prejudice, aggression and violence, antisocial behaviour
PE	E9_10	High energy and particles astronomy – X-rays, cosmic ray		metabolism	-related disorders cancer and cardiovascular	L	SH3_3	Social integration, exclusion, prosocial behaviour

PANEL SELECTION

beamtech Research & Innovation Management

Panel

Nature of

the projec

- > The reciprocal effect of the panel and proposal
 - > The panels are a given
 - > Outsmart the (panels') constraints
 - > What leads what? the panel or the proposal?
 - > It is highly case-specific
- ➤ Keep the reviewers' background in mind
 - Adjust terminology accordingly
 - > Excite them
 - > If needed, state the obvious
 - > Explicitly write the high risk / high gain
 - > Be consistent throughout the proposal (B1+B2)

creening Establish the Concept

© Beacon Tech Ltd. 2016

L L L Deadline Interview GA

- Help the panel members to select the best reviewers - abstract and "ERC keywords" are key
- Add free keywords
- Clearly justify multiple review panel choices
 - > Dedicate time to clearly articulate this, phrase with care
 - > Do not leave this to last minute
 - > Do not exceed the 1,000 characters limit
 - Explain shortcoming of one panel compared to the other

- > The feasibility 'catch 22'
- Writing ERC like other grants
- In ERC you cannot kill 2 birds with 1 stone
- > (Not) being crystal clear
- ➤ ''But is it an ERC??''

Establish the	Proposal Writing	Admin /	
Concept		Technical	Preparation

Screening Establish the Concept Proposal Writing Admin / Interview Technical Preparation

EVALUATION CRITERIA

- Addresses important challenges
- Ambitious objectives beyond SotA, non-incremental work
- High risk / High gain
- Feasibility vs. High risk
- Methodology appropriate to achieve goals
- Novel methodology
- Timescales & resources necessary & justified
- © Beacon Tech Ltd. 2016

- PI's ability to propose & conduct ground-breaking research
- PI's creative independent thinking
- PI's achievements typically go beyond SotA
- PI's leadership in training & advancement of young scientists
- PI's level of commitment (%)

THE APPLICATION

- <u>B1 should stand alone</u> all essential information must be covered in the synopsis
- Avoid cross-references between B1 and B2
- Identical text, figures or references in both B1 and B2?
- References are <u>NOT included</u> within the page limits

Screening	Establish the	Proposal Writing	Admin /	Interview
	Concept		Technical	Preparation
1000				and the second

- > On top of the typical grant writing training
- Understanding the uniqueness of ERC
- Concept forming & crystallization
- High risk high gain
- Non-incremental research
- Do's & Don'ts
- Lessons learnt

Screening Establish the Proposal Writing Admin / Interview Concept Technical Preparation Deadline Interview GA

PART A

1- General information

- Title / acronym / duration
- Primary Review Panel / Secondary Panel
- Keywords
- Abstract

2- Administrative data

• PI & Host Institution

3- Budget

- Only bottom line
- 4- Ethics issues table
- 5- Call specific questions
 - Extension of eligibility window
 - Excluded reviewers

© Beacon Tech Ltd. 2016

L _ _ _ _

Admin / Interview

<u>General</u>

- > Avoid redundancies and repetitions in the text
- Conform to the templates
 - Avoid outdated templates slight changes may occur from deadline to deadline
 - > Do not exceed page limits, font size, margins
 - > Use template tables for Funding ID and budget
- PI's dedication to the project according to category
- Funding ID ongoing and pending grants only
 - > Past grants listed in track record / CV
- Keep copies of all application documents for backup, <u>during the process</u>

© Beacon Tech Ltd. 2016

L L L

Admin / Interview

- Missing details
 - > PhD award date (AdG)
- Mistakes & mix-ups
 - > Abstract is different than in B1 (should be identical)
 - > Uploading a draft file with comments / tracked changes
 - > Uploading a file to the wrong category (e.g. B2 instead of B1)
 - Page no. references in ethics issues table do not match pages in B2
- Missing documents
 - > Forgot ethics issues annex
 - > Forgot diploma scan (StG/CoG)
 - Forgot supporting documents for eligibility window extension (children's birth certificates, etc.)

creening	Establish the	Proposal Writing	Admin / Interview
	Concept		Technical Preparation

TECHNICAL HIGHLIGHTS

<u>Budget</u>

- Justification is key
- Correlate PI dedication to PI labour cost
 - > Pre-Award: might generate a comment by the evaluators
 - > Post-Award: internal/external audit concerns
- > Equipment
 - > Must be appropriate to the project's tasks
 - > This is not an infrastructure grant
 - Do not exploit the 'extra' equipment budget before exhausting the 'regular' possible grant
- Subcontracting generally not recommended, except for:
 - > Institutional regulations
 - > Well justified complementary marginal work
- The PI must be able to justify the budget during the interview (StG/CoG)

© Beacon Tech Ltd. 2016

Writing Admin / Interview Technical Preparation

Post-award budget flexibility

- Budget plan: high-level cost categories
- No one expects an accurate budget plan for 6 years ahead
- > The challenge inaccurate estimation of costs:
 - > Equipment, consumables and travel
 - > Collaborations
 - > Sub-contracting
- Justification enables flexibility
- Personnel cost is the best 'safe harbour', but not the only one

creening	Establish the Concept	Proposal Writing	Admin / Interview Technical Preparation

TECHNICAL HIGHLIGHTS

Budget table

Cost Category		Total in Euro	
		PI ²	
	Personnel	Senior Staff	
		Postdocs	
		Students	
		Other	
Direct	i. Total Direct co	osts for Personnel (in Euro)	
Costs ¹	Travel		
	Equipment		
	Other goods and services	Consumables	
		Publications (including Open Access fees), etc.	
		Other (please specify)	
	ii. Total Other D	irect Costs (in Euro)	
A – Tot	al Direct Costs (i	+ ii) (in Euro)	
B – Indi	irect Costs (overh	eads) 25% of Direct Costs ³ (in Euro)	
C1 – Su	bcontracting Cos	ts (no overheads) (in Euro)	
C2 – O t	her Direct Costs	with no overheads ⁴ (in Euro)	
Total Es	stimated Eligible	Costs $(A + B + C)$ (in Euro) ⁵	
Total R	equested EU Con	tribution (in Euro) ⁵	

Request for additional funding above EUR 2 500 000 for	Justification
Keep only that category(ies) that apply to	
he project.	
a) covering eligible 'start-up' costs for a PI	
noving from another country to the EU or	
in Associated Country as a consequence of	
eceiving an ERC grant and/or,	
b) the purchase of major equipment	
nd/or,	
c) access to large facilities.	

* Presented only in B2

© Beacon Tech Ltd. 2016

creening Establish the Proposal Writing Admin / Interview Concept Technical Preparation

> L L Deadline Interview GA

Annexes

- Host support letter originally signed, stamped and dated by the host institution's legal representative
- Scanned PhD diploma (StG & CoG)
- Ethical issues annex
- > Other relevant documents:
 - (e.g. Children's birth certificates)

* All submitted docs should be in an EU official language – otherwise translation is required

creening	Establish the	Proposal Writing	Admin / Interview
	Concept		Technical Preparation

ETHICAL ISSUES

- Required in case of any ethical issue related to the project
- No ethical committee's approval necessary for submission
- Evaluated after the application passes the 2nd stage

Screening	Establish the	Proposal Writing	Admin / Interview
	Concept		Technical Preparation

beamtech Research & Innovation Management

Ethical self-assessment – examples

Humans

- Which humans are involved?
 - vulnerable persons
 - persons unable to give consent
 - Children
- Are some interventions on the body foreseen?
 - invasive techniques (biopsy, EEG, fMRI)
 - Patients? Healthy volunteers?
- Which are the procedures for recruitment and consent?
- Documents to provide

 ethics authorisations
 information and consent forms

© Beacon Tech Ltd. 2016

Data Protection

- Which data?
 - genetic data
 - sensitive data (health, political or religious opinions, sexual orientation, etc.)

Which procedure?

- procedure for collection how, by whom, information on rights, info and consent forms, anonymisation
- procedure for protection of data how it is protected, encrypted, where, for how long?
- Documents to provide
 - data protection officer/authority authorisations
 - information and consent forms
 - security measures

ETHICAL ISSUES

beamtech Research & Innovation Management

Ethical self-assessment – examples

Cells and Tissues

- What type?
 - hESCs
 - foetal cells/tissues
 - use or creation of cells/cells lines
- What for?
 - justification of use
 - origin: direct collection/ biobanks /secondary use
- Documents to provide
 - ethics authorisations
 - information and consent forms
 - justification of right for secondary use

Which animals are involved?

Animals

- vertebrates
- GMOs
- Primates
- wild / protected animals
- For what use?
 - Justification for choice of species
 - 3Rs, precise evaluation of number
 - Description of procedure, husbandry, anaesthesia, euthanasia
 - applicable legislation
- Documents to provide
 - ethics authorisations / project license
 - personal and laboratory licenses

© Beacon Tech Ltd. 2016

Admin / Interview Technical Preparation

beamtech Research & Innovation Management

Ethical self-assessment – examples

Non EU countries

- Which countries?
 - associated countries, low income, others?
 - to do what with? Whom with?
- Export/import of ressources? - which sources (including data)? - export/import from/to EU
- Benefit sharing measures for low income countries
- Documents to provide
 - National and local ethics authorisations
 - Authorisations for import/export
 - Contact with local researchers/local authorities
 - BUT, if politically sensitive research there can be exceptions

© Beacon Tech Ltd. 2016

Misuse and Security

- Which threats?
 - health for team and/or society
 - misuse risks/ terrorist abuse
 - dual use
 - threats on human rights
- What for?
 - Justification
- Documents to provide
 - ethics authorisations
 - mitigation measures
 - balance of rights

Ethical self-assessment – examples

Environment Protection

- Is the project taking place in sensitive areas?
- Is the project using/collecting protected elements?
 - oceans Directive on Oceans?
 - natural areas Directive Habitat?
 - areas with endangered/protected species Directive on birds, CITES convention?

• What for?

- justification
- measures to minimize impact
- benefit of the research to the environment

• Documents to provide

- ethics authorisations
- specific zone authorisations

creening	Establish the	Proposal Writing	Admin / Interview
	Concept		Technical Preparation

Examples...

- Poorly scanned host support letter
- > PI name / acronym / title do not match host support letter
- > Different acronym / title throughout the proposal (in parts A and B)
- > Budget inconsistencies in B2 and part A, missing justifications
- Formatting bugs in the Word document / template
- Low-resolution figures
- Bugs when converting to PDF (typically figures and formulas)
- > Mac OS vs. PC Windows; Microsoft Word vs. Latex vs. Open Office
- Template instructions / track changes leftovers in B1 and B2
- Missing panel selection justification in B1 cover page

- How close are the reviewers to my area? How can they evaluate my research?
 - 2 groups of reviewers: perfect match (positive/negative) & nonperfect match
 - > Attend to both groups when writing the proposal
- Suitability of the host institution not evaluated as in the past
- How many reviewers will evaluate my application?
- Shall I exclude reviewers?
- Relation to previously submitted applications does the 'system' remember me?
- > Shall I cut down the budget to be more competitive?
- Can I convey new information to the reviewers?

Screening Establish the Proposal Writing Admin / Interview Concept Technical Preparation Deadline Interview GA

- Who will be there? Panel selection prepare accordingly
- > Mind the <u>specific</u> interview instructions
- 2nd stage evaluation results are already set at the time of the interview
- The interview is not like presenting in a conference / teaching
- The challenge to summarize the project into a 5-12 minutes presentation
- Convey the message 'Why me? Why now?'

Prepare, Consult, Rehearse

creening	Establish the Concept	Proposal Writing	Admin / Technical	Interview Preparation	
			D	L	Interview C

<u>Unexpected scenarios...</u>

- > The 'waiting room' syndrome
- > Delays in the interview agenda
- Power outage, interruptions
- Videos do not play
- > The panelist that does not like you
- Questions you cannot answer
- Highly technical / marginal questions

ESR comments

- > Group 1: highly important
- > Group 2: nice to have
- > Group 3: irrelevant / unexplained / unjustified / personal
- > Determine if there is a "show stopper"
- Resubmit does not mean "copy & paste"
- ➢ Re-visit:
 - > Scientific concept and presentation
 - > Eligibility window
 - > Publications and track record
 - > Templates

- ERC awareness and training are key for success
- The sooner, the better let the proposal mature (~2-3 months before deadline) and avoid last minute issues
- No application is identical
- Encourage applicants to consult with <u>experienced</u> peers (i.e. ERC awardees or panel members) and ERC professionals

TAKE HOME MESSAGE

ERC is not the typical national grant – it deserves a dedicated process and special attention

Yoram Bar-Zeev ybz@beacontech.eu Sharon Alon sharon.alon@beacontech.eu Yasmin Wachs yasmin.wachs@beacontech.eu

Linked in

This presentation is the property of Beacon Tech Ltd. and should not be distributed without prior consent.

For training and individual consulting services, please contact us at - <u>ybz@beacontech.eu</u>